Mechanical Engineering Technology

CampusStart DateTuition/Fees

Program Overview

Keep the wheels in motion. The Mechanical Engineering Technology program trains you to provide technical support and services in the design, development, maintenance and testing of machines, components, tools, heating and ventilation systems. In your first year, you'll learn the basics of mechanical engineering technology. In your second year, you'll learn advanced machine design, computer-aided drawings and specifications, building systems including HVAC, and engineering manufacturing operations and processes.


Duration

The requirements for this diploma program may be achieved within two years of full-time study.


Admission Requirements

    Profile C

  • High School Diploma or Adult High School Diploma or GED Diploma of High School Equivalency or Essential Skills Achievement Pathway: Post-Secondary Entry High School Diploma
    • Foundations of Mathematics 110
      or
      Geometry and Applications in Mathematics 112 and Functions and Relations 112
      • Total of two (2) sciences, including at least one (1) from the following:
        • Biology 112 or 122
        • Chemistry 112 or 122
        • Physics 112 or 122

      NB Francophone High School Math Equivalencies
      International Student Admission Equivalencies


      Career Possibilities

      Graduates of this program can work in technical and industrial areas including mechanical and machinery maintenance and operations, manufacturing, processing, inspection, mechanical design, engineering sales and research and development.

      Find career possibilities related to this program in Career Coach.



      Specific Considerations

      Mechanical engineering technologists need the following qualities:
      • the capability to visualize 3-D objects
      • the ability to detail a project from two-dimensional drawings
      • the ability to perform with defined detail and within narrow tolerances
      • good analytical skills
      • good sketching and drawing skills
      • the ability to solve mechanical problems by applying of theories
      • conduct tests with a methodical approach
      • good mathematical skills
      • effective communication skills
      • capable of working independently or as part of a team when required

      Local campuses can provide information on courses that are the prerequisites for technology programs at NBCC. Many universities give credits for courses completed in this program, however, assessment is normally completed on an individual basis.

      Students accepted into this program may be eligible for financial awards offered through the J.D. Irving Limited Training Incentives Program.

      Technology Requirements
      NBCC is a connected learning environment. All programs require a minimum specification, including access to the internet and a laptop. Your computer should meet your program technology requirements to ensure the software required for your program operates effectively. Free wifi is provided on all campuses.


      Areas of Study

      • Mathematics
      • Thermodynamics
      • Fluid Mechanics
      • Mechanical Systems and Component Design
      • Engineering Design and Drawings
      • Materials Investigation and Analysis
      • Design and Specifications Interpretation
      • CNC Programming
      • Manufacturing Processes
      • Heating, Ventilation and Air Conditioning (HVAC)
      • Facility Management
      • Health and Safety
      • Communication
      • Teamwork
      • Problem Solving
      • Quality Assurance
      • Professional Ethics


      Program Courses

      Courses are subject to change.

      This course introduces the fundamentals of electrical circuits and machines. Both DC and AC electrical theory and circuit application are studied. Students learn the concepts of charge, electric fields, voltage, current, power, energy, magnetic fields and the link between electricity and magnetism for the creation of machines. They also learn how to use the appropriate unit of measurement to measure voltage, current and impedance in an electrical circuit. Learning will be achieved through lectures, in-class activities, and laboratory experiments.

      Prerequisites:

      • PHYS1130C
      • MATH1272B

      This course studies the components and methods for the design of water systems in a building. Topics include water supply, fire protection systems, wastewater and storm water systems. Application of associated industry standards and building codes in the design of building water systems will be discussed. Learning is achieved through lectures, in-class activities, and project work.

      Prerequisites:

      • SAAL1838B
      • FLUI1063A

      This course provides the fundamentals of HVAC systems including thermal comfort and air quality needs of occupants, the heat gains and losses to and from the building, and the resulting heating and cooling loads. Students will study the properties of air and develop methods to calculate and analyze heating and cooling loads and psychrometrics. They will learn how to determine and maintain comfort conditions for buildings. The Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • PHYS1143A

      This course provides the fundamentals of the HVAC (heating, ventilation and air conditioning) design for industrial and commercial buildings. Students will understand the operation of HAVC systems and learn how to specify the equipment and materials for the design of simple HVAC systems. This is a hands-on course with a focus on the design for industrial and commercial HVAC systems.

      Prerequisites:

      • BSSI1054D

      This course covers the theory and application of thermodynamic cycles including Rankine, Otto, and Diesel cycles. Students learn how those thermodynamic cycles are used to extract mechanical energy from heat. Learning is achieved through lectures and in-class activities. 

      Prerequisites:

      • PHYS1143A

      This course introduces the fundamental principles for building lighting system analysis and design. Topics include illumination, light fixtures, lighting controls, emergency lighting, and egress signage. Students will learn to design and simulate lighting arrangements using lighting design software. They will apply applicable industry standards and codes to meet the lighting system requirements for buildings. Learning is achieved through lectures and in-class activities.

      This course is designed to help students strengthen their fundamental skills in writing clear, effective sentences and paragraphs, and enable them to create organized, unified and coherent documents. The writing process is introduced. Students will recognize the importance of writing for the intended purpose and audience.

      This course introduces students to the fundamentals of technical writing and research. Students will learn how to write a variety of technical documents and business correspondence suitable to a specific audience and purpose as well as learn how to conduct research and document sources.

      Prerequisites:

      • COMM1264A

      This course introduces the fundamentals of engineering technical report and proposal writing. Topics include technical report and proposal design, formatting, visual aids, and specific types of content required for technical report and proposal writing.

      In this course, students will apply their previously acquired writing skills and writing process (prewriting, writing and revising). They will learn how to properly research, plan, structure and write technical reports and proposals using proper layouts, form, and formats. Learning is achieved through lectures and hands-on activities.

      Prerequisites:

      • COMM1267D

      This course is designed for students to learn how to quickly make sketches and notes. Emphasis is on recognizing the important details and getting them clearly sketched and/or written down. Accuracy, neatness, and legibility are stressed throughout.  

      Learning is achieved through hands-on class activities and assignments. 

      This course introduces students to ethical principles and codes of conduct applicable to Professional Engineering Technology practice. It prepares students for being engineering technology professionals by exploring critical thinking, ethical behavior, and the legal and professional accountabilities that apply in the workplace. The industry's code(s) of ethics and practical case studies are used as the learning focus.

      Learning is achieved through lectures, case studies, and team projects.

      This course is the first phase of the senior technical project. It provides students with an opportunity to work independently or with a team on a selected engineering project. Students will integrate the knowledge and skills they learned in the program to develop a project proposal and complete details of a project plan. In this course, students will select an engineering project on a topic, prepare a project proposal, and submit it for instructor approval. Upon instructor approval, students will research, design, and develop a project plan that outlines the specifications and tasks to be completed in time and within the budget for the proposed project. Students are expected to produce some deliverables and project management documents based on the project plan to facilitate the second phase of the project. Learning is achieved through lectures and guided independent study under the guidance of a project advisor.

      Prerequisites:

      • PROJ1099B
      • COMM1268B

      This course is a continuation of the senior technical project. Students will evaluate their project proposed and developed in the previous course. They will complete their project work and prepare and present the final project report. Learning is achieved through lecture and guided independent study under the guidance of a project advisor.

      Prerequisites:

      • ETTG1034B

      This course introduces students to basic concepts and methods of fluid mechanics. It aims to establish a strong foundation and understanding of basic fluid mechanics. Topics include hydrostatics and hydrodynamics. Both SI and USCS units are used throughout. Students will apply the principles of fluid mechanics in the analysis and solution of engineering problems. Learning will be achieved through lectures, in-class activities, and laboratory experiments.

      Prerequisites:

      • PHYS1142A
      • MATH1272B

      This course introduces the technical characteristics and functioning of different types of pumps and pipes. It discusses various aspects of fluid flow in pipes and requirements for the safe, compliant operation of pipeline systems. Students will learn how to analyse and design basic fluid flow systems. They will learn to select the appropriate pump for the given application. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • FLUI1061A

      This course introduces the fundamentals of instrumentation and process control. Students will gain a basic understanding of simple control loops and learn instrumentation devices used for level, temperature, pressure, and flow measurement. They will also learn how to use control methods such as on/off, and PID (proportional integral derivative) control to assure the reliable, efficient, and safe operation of manufacturing processes. Students gain hands-on applications and practical aspects of instrumentation and process control through laboratory experiments.

      Prerequisites:

      • BEEB1191A

      This course provides the students with basic knowledge of polymeric and ceramic materials, their microstructures, properties, behaviours, and production methods. The effects of additives and modifiers, composites, and surface engineering with the materials will be examined in depth. Students will apply their learned knowledge to select appropriate materials and production methods for fabrication processes.

      This course introduces the student to concepts involved in the applications of the ASTM (American Society for Testing and Materials) Non-Destructive Testing standards, interpretation of test results and defect analysis. Learning is achieved through performing ASTM standard tests in a laboratory setting.

      Prerequisites:

      • MPMI1103C

      This course is designed to equip students with fundamental knowledge of the structure, properties, processing, and performance of engineering materials used in manufacturing metal objects. Emphasis is placed on the properties of metallic materials and how those properties can be changed through various processing methods. Students will be able to apply what they have learned to the selection of appropriate materials and processing methods for the design and manufacturing of metal objects. Learning will be achieved through lectures and class activities.

      Prerequisites:

      • PHYS1142A

      This course introduces students to the fundamentals of material testing methods and procedures. Students learn how mechanical properties of metals are tested and determined through the application of ASTM (American Society for the Testing of Materials) Standards. Learning is achieved through performing ASTM standard tests in a laboratory setting.

      Prerequisites:

      • MATE1102A

      This course forms the foundations of technical mathematics. Topics covered include fundamental numerical calculations, manipulation of algebraic expressions, and solving equations, system of equations, and word problems. Learning is achieved through lectures, classroom examples and working out problems.

      This course is designed for students to learn more advanced algebra, trigonometry, and geometry. Topics include quadratic equations, trigonometry, logarithms, and vectors.

      Learning will be achieved through lectures and classroom examples and work. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • MATH1271B

      This course introduces students to advanced technical math required to solve applied problems in Engineering Technology. Topics include complex numbers, matrices, plane analytic geometry, graphs of trigonometric functions and trigonometric equations. Limits, as required for calculus, is also introduced. 
       
      Students will be able to apply the advanced technical math to solve technical problems and evaluate limits. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • MATH1272B

      This course introduces students to calculus with derivatives and integration of algebraic functions. Applications include equations of tangents and normal, Newton’s method for solving equations, curvilinear motion, related rates, and areas under curves. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • MATH1273A

      This course is built on the course, Introductory Calculus. The course covers applied technical problems in integration, derivatives, and integration of transcendental functions. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • MATH1274A

      This course studies the basics of differential equations. Topics include arithmetic and geometric series, limits of series, Taylor series, Maclaurin Series, Fourier Series, LaPlace Transforms, and first and second-order differential equations. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • MATH1275B

      This course introduces the process for turning CAD modeled designs into actual parts using Computer Numerical Controlled (CNC) milling machines. Students will learn how to program, set up and operate a CNC milling machine to manufacture parts. Learning is achieved through lectures, in-class activities and practical experience in a CNC machine lab.

      Prerequisites:

      • TOFO1016C
      • SAAL1839B

      This course provides students with fundamental concepts, manufacturing processes, and machine tools used in industries to produce mechanical parts and products. Various processes, machinery, and operations will be examined. 

      Prerequisites:

      • TOFO1016C

      This course provides students with hands-on experience to apply manufacturing processes and standard machine and hand tools to create mechanical parts or products. Students will use the tools such as ban saw, files, hacksaw, drill press, taps, dies, press and broach to create a part or product in a manufacturing lab environment.

      Prerequisites:

      • MNFT1059B

      This course provides an overview of principles and practices of learn thinking in manufacturing. The course explains why waste elimination is a core component of lean thinking. Students will examine the benefits of lean thinking and its practical approach to reducing waste and continuous improvement. Students will also learn how to apply principles of leaning thinking to develop and implement lean manufacturing.

      This course introduces basic concepts of strength of materials, and the behavior of the materials and structures under applied loads. Topics include deformation, deflection, and safe design requirements for columns and pressure vessels. Students will perform basic strength calculations in the analysis and design of structures or components. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • MPMI1107A
      • MATE1102A

      This course introduces students to motion and analysis of mechanical components in simple and complex machines, as well as design fundamentals of machines and their components. The course covers the nature and composition of machines, designing for strength, stress concentration, safety, fatigue, surface, and size influences. It also looks into failure theories and factors of safety. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • MPMI1103C

      This course introduces students to engineering mechanics in static systems. Topics include static equilibrium, structural members, centroids, and moments of inertia. Students learn basic concepts and skills that form the foundation for structural and mechanical design. They will develop the ability to understand and analyze static forces on various structures and engineering applications. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • MATH1273A
      • PHYS1142A

      This course provides an introduction to the meaning of community service.  Students learn how community service can enhance a student’s educational experience, personal growth, employability, and civic responsibility. Students participate in one day of volunteering to enhance their understanding of civic responsibility and to help the New Brunswick Community College realize its vision of transforming lives and communities.

      This workshop introduces students to the process of finding employment. It explores the various strategies and resources available, and examines the role of social media.

      This course introduces students to the principles of energy and matter. Emphasis is on basic concepts of how energy interacts with matter. Students also learn practical techniques for solving problems relating to energy and matter. 

      Learning will be achieved through lectures, class activities and assignments. 

      Prerequisites:

      • MATH1271B

      This course is designed for students to gain practical experience ​in data collection, analysis, problem solving, and experimentation related to energy and matter. Students learn to take measurements and practice working with different units of measure as they analyse data and solve problems. Learning is achieved through performing experiments in a lab setting and writing lab reports.

      Prerequisites:

      • PHYS1130C

      This course introduces the principles of Newtonian physics. The focus is on forces acting on bodies in one and two dimensions. Rotational motion is also discussed. Students will learn to take measurements, analyse collected data, and solve problem. They will gain practical experience observing and anlaysing objects with forces acting on them in a lab setting.

      Prerequisites:

      • PHYS1130C
      • MATH1272B

      This course introduces students to the basic vapour-compression refrigeration cycle. Topics include the vapour-compression cycle, refrigerants, refrigeration components, heat exchanger design, and the arrangement and operation of heat pumps. Students will gain an understanding of the basic refrigeration cycle as used in HVAC systems. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • FLUI1061A

      This course provides students with basic principles, tools, and techniques to manage an engineering project from its initiation phase, through planning, execution, control, and closeout.
       
      As part of the course, students will apply the knowledge gained to create a project management plan for a simulated engineering project in a team effort or on an individual basis. Learning is achieved through lectures and hands-on class activities.

      This course introduces basic concepts, and process control procedures and tools for the management of quality assurance. Topics include quality assurance (QA) concepts, improvement strategies, and statistical process control. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • STAT1034B

      This course introduces students to basic computer applications and tools that are integral to all engineering disciplines, including word processing, presentation, spreadsheet, and electronic file management and data sharing.

      Students learn how to select and use appropriate computer applications to perform tasks such as research, data analysis, data presentation and sharing, and preparation of technical documents and reports within their discipline. An emphasis is placed on the data security, and safe use and management of files in a collaborative networked environment. Learning is achieved through practical application of skills during hands-on class activities and assignments.

      This course introduces students to the CAD (Computer-Aided Design) tools that are integral to all engineering disciplines for making and annotating basic engineering drawings. Students will learn the application interface, options, and commands for producing basic engineering drawings. Learning is achieved through practical, hands-on activities while using the CAD software.

      This course is building on the application of CAD tools to produce and annotate basic engineering drawings covered in the previous course, Introduction to CAD. This course discusses how to use CAD tools to prepare and produce drawings for various mechanical components. Emphasis is on producing multi-view drawings. Learning is achieved through practical, hands-on activities while using CAD software.

      Prerequisites:

      • SAAL1836A

      This course introduces students to BIM (Building Information Modelling) software and its application to the modelling of building mechanical systems. Building components and how they interact and integrate with one another will be discussed. Students learn how to insert the mechanical system components of a building into an existing building model. Emphasis is placed on producing drawings of building mechanical systems. Learning is achieved through practical, hands-on activities while using the BIM software.

      Prerequisites:

      • SAAL1836A

      This course introduces fundamentals of solid modeling and basic skills relating to application of solid modeling software to create 3D models of parts and assemblies for manufacturing operations and production.

      In this course, students will participate in a design project and learn how to create a 3D model of a complex mechanical part. Learning is achieved through hands-on application of the modelling software.

      Prerequisites:

      • DRDE1081A

      This course is building on the application of CAD tools to produce multi-view drawings of mechanical components covered in the previous course, CAD for Mechanical Components. This course discusses how to use CAD tools to produce detailed drawings of mechanical processes and systems. Topics include P&ID (Piping and Instrumentation Diagram) drawings, and piping and ventilation systems. The emphasis is on P&ID and related drawings used to represent processes and process flow. Learning is achieved through practical, hands-on activities while using CAD software.

      Prerequisites:

      • SAAL1837B

      This course is building on the application of solid modelling software to produce 3D models of parts and assemblies covered in the previous course, CAD for Manufacturing. This course introduces CAD based simulation and analysis software. Students will learn how to use solid modelling software to simulate and analyze mechanical components before they are manufactured. Topics include simulating motion and determining stress and deflection under load. Learning is achieved through hands-on use of the modelling software.

      Prerequisites:

      • SAAL1839B

      A safe and healthy workplace is the responsibility of the employer and the employee. This course introduces students to the importance of working safely and addresses how employers and employees can control the hazards and risks associated with the workplace. Students will also learn about the roles and responsibilities of key stakeholders including WorkSafeNB, the employer and the employee in ensuring workplaces are safe.

      This course provides introductory statistics for engineering technologists. Topics Include collecting, organizing and reporting data, calculating descriptive and inferential statistics values, calculating confidence intervals, simple probability and predicting events, calculating linear regression, and hypothesis testing for linear correlation coefficients. Learning is achieved through lectures and in-class activities.

      Prerequisites:

      • MATH1273A

      This course provides a foundation in metrology as applied to metal-working manufacturing. Topics include the basics of geometric dimensioning and tolerancing (GD&T) and measuring skills as per ASME (American Society of Mechanical Engineers) standard for the design and manufacturing process of mechanical parts. Learning is achieved through lectures, in-class activities, and labs and demonstrations.

      This course introduces students to the fundamentals of effective, successful presentations. Students learn how to prepare and deliver online or in-person presentations of various lengths and purposes. They will discover how to prepare presentations around essential objectives, present key concepts and ideas, design and make effective visuals using presentation software, and apply techniques for polishing and mastering presentation delivery.

      As part of the learning, students will apply the appropriate tools and techniques to prepare the content, create visual aids using presentation software, and deliver one or more presentations to their peers in class.

      This course introduces the basic welding principles and practices on safe use of various types of welding equipment and welding processes. Students will read and interpret blueprints and welding process specifications, and gain knowledge of metallurgy. They learn how to use different welding equipment for different welding and cutting processes. Learning will be achieved through lectures, in-class activities, and laboratory experiments.


      NOC Codes

      22301 - Mechanical engineering technologists and technicians


      Articulation Agreements

      Institution: University of New Brunswick - Saint John
      Information: NBCC graduates of any 2-year diploma program with a GPA of 70% or greater receive 2 years full credit toward Bachelor of Applied Management Degree.


      Institution: University of New Brunswick - Saint John
      Information: Bachelor of Technology.
      UNB agrees to recognize NBCC's Mechanical Engineering Technology diploma program for transfer credit and entry into the Bachelor of Technology - Industrial Engineering  program.

      External Certifications

      Mechanical Engineering Technology graduates may have an opportunity to acquire the following external certifications upon meeting the external agencies certification requirements and paying any required fees to the external agency:

      Institution: NBSCETT - New Brunswick Society of Certified Engineering Technicians and Technologists
      External Certification: Professional Technologist
      Information: Certification by the New Brunswick Society of Certified Engineering Technicians and Technologists.

       


      Disclaimer: This web copy provides guidance to prospective students, applicants, current students, faculty and staff. Although advice is readily available on request, the responsibility for program selection ultimately rests with the student. Programs, admission requirements and other related information is subject to change.

      Ask us